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Abstract. We study the right eigenvalue equation for quaternionic and complex linear matrix
operators defined in n-dimensional quaternionic vector spaces. For quaternionic linear operators
the eigenvalue spectrum consists of n complex values. For these operators we give a necessary
and sufficient condition for the diagonalization of their quaternionic matrix representations. Our
discussion is also extended to complex linear operators, whose spectrum is characterized by 2n
complex eigenvalues. We show that a consistent analysis of the eigenvalue problem for complex
linear operators requires the choice of a complex geometry in defining inner products. Finally, we
introduce some examples of the left eigenvalue equations and highlight the main difficulties in their
solution.

1. Introduction

Over the last decade, after the fundamental works of Finkelstein et al [1–3] on foundations
of quaternionic quantum mechanics (qQM) and gauge theories, we have witnessed a renewed
interest in algebrization and geometrization of physical theories by non-commutative fields
[4, 5]. Among the numerous references on this subject, we recall the important paper of Horwitz
and Biedenharn [6], where the authors showed that the assumption of a complex projection of
the scalar product, also called complex geometry [7], permits the definition of a suitable tensor
product [8] between single-particle quaternionic wavefunctions. We also mention quaternionic
applications in special relativity [9], group representations [10–13], non-relativistic [14, 15]
and relativistic dynamics [16, 17], field theory [18], Lagrangian formalism [19], electroweak
model [20], grand unification theories [21] and the preonic model [22]. A clear and detailed
discussion of qQM together possible topics for future developments in field theory and particle
physics is found in the recent book by Adler [23].

In writing this paper, the main objective has been to address the lack of clarity among
mathematical physicists on the proper choice of quaternionic eigenvalue equation within a
qQM with complex or quaternionic geometry. In the past, interesting papers have addressed
the mathematical discussion of the quaternionic eigenvalue equation, and related topics. For
example, we find in the literature works on quaternionic eigenvalues and the characteristic
equation [24, 25], diagonalization of matrices [26], the Jordan form and q-determinant [27, 28].
More recently, some of these problems have been also discussed for the octonionic field [29, 30].

Our approach aims to give a practical method to solve the quaternionic right eigenvalue
equation in view of increasing interest in quaternionic [5, 23, 31] and octonionic [4, 32–36]
applications in physics. Given quaternionic and complex linear operators on n-dimensional
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quaternionic vector spaces, we explicitly formulate practical rules to obtain the eigenvalues and
the corresponding eigenvectors for their n-dimensional quaternionic matrix representations.
In discussing the right complex eigenvalue problem in qQM, we find two obstacles. The
first one is related to the difficulty in obtaining a suitable definition of the determinant for
quaternionic matrices, the second one is represented by the loss, for non-commutative fields,
of the fundamental theorem of the algebra. The lack of these tools, essentials in solving
the eigenvalue problem in the complex world, makes the problem over the quaternionic
field a complicated puzzle. We overcome the difficulties in approaching the eigenvalue
problem in a quaternionic world by discussing the eigenvalue equation for 2n-dimensional
complex matrices obtained by translation from n-dimensional quaternionic matrix operators.
We shall show that quaternionic linear operators, defined on quaternionic Hilbert space with
quaternionic geometry, are diagonalizable if and only if the corresponding complex operators
are diagonalizable. The spectral theorems, extended to quaternionic Hilbert spaces [1],
are recovered in a more general context. We also study the linear independence on H of
quaternionic eigenvectors by studying their (complex) eigenvalues and discuss the spectrum
choice for quaternionic quantum systems. Finally, we construct the Hermitian operator
associated with any anti-Hermitian matrix operator and show that a coherent discussion of
the eigenvalue problem for complex linear operators requires a complex geometry. A brief
discussion concerning the possibility of having left eigenvalue equations is also proposed and
some examples presented. We point out, see also [29, 36], that left eigenvalues of Hermitian
quaternionic matrices need not be real.

This paper is organized as follows. In section 2, we introduce the basic notation
and mathematical tools. In particular, we discuss similarity transformations, symplectic
decompositions and the left/right action of quaternionic imaginary units. In section 3, we give
the basic framework of qQM and translation rules between complex and quaternionic matrices.
In section 4, we approach the right eigenvalue problem by discussing the eigenvalue spectrum
for 2n-dimensional complex matrices obtained by translating n-dimensional quaternionic
matrix representations. We give a practical method for diagonalizing n-dimensional
quaternionic linear matrix operators and overcoming previous problems in the spectrum
choice for quaternionic quantum systems. We also discuss the right eigenvalue problem for
complex linear operators within a qQM with complex geometry. In section 5, we introduce
the left eigenvalue equation and analyse the eigenvalue spectrum for Hermitian operators.
We explicitly solve some examples of left/right eigenvalue equations for two-dimensional
quaternionic and complex linear operators. Our conclusions and outlooks are drawn in the
final section.

2. Basic notation and mathematical tools

A quaternion, q ∈ H, is expressed by four real quantities [37, 38]

q = a + ib + jc + kd a, b, c, d ∈ R (1)

and three imaginary units

i2 = j2 = k2 = ijk = −1.

The quaternion skew-field H is an associative but non-commutative algebra of rank four over
R, endowed with an involutory antiautomorphism

q → q = a − ib − jc − kd. (2)
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This conjugation implies a reversed-order product, namely

pq = qp p, q ∈ H.

Every non-zero quaternion is invertible, and the unique inverse is given by 1/q = q/|q|2,
where the quaternionic norm |q| is defined by

|q|2 = qq = a2 + b2 + c2 + d2.

Similarity transformation

Two quaternions q and p belong to the same eigenclass when the following relation:

q = s−1ps s ∈ H

is satisfied. Quaternions of the same eigenclass have the same real part and the same norm,

Re(q) = Re
(
s−1ps

) = Re(p) |q| = |s−1ps| = |p|
consequently, they have the same absolute value of the imaginary part. The previous equations
can be rewritten in terms of unitary quaternions as follows:

q = s−1ps = s

|s|p
s

|s| = upu u ∈ H uu = 1. (3)

In equation (3), the unitary quaternion,

u = cos 1
2θ + �h · �u sin 1

2θ
�h ≡ (i, j, k) �u ∈ R

3 |�u| = 1

can be expressed in terms of the imaginary parts of q and p. In fact, given two quaternions
belonging to the same eigenclass,

q = q0 + �h · �q p = p0 + �h · �p q0 = p0 |�q| = | �p|
we find [39], for �q 	= ± �p,

cos θ = �q · �p
|�q|| �p| and �u = �q × �p

|�q|| �p| sin θ
. (4)

The remaining cases �q = �p and �q = − �p represent, respectively, the trivial similarity
transformation, i.e. uqū = q, and the similarity transformation between a quaternion q and
its conjugate q̄, i.e. uqū = q̄. In the first case the unitary quaternion is given by the identity
quaternion. In the last case the similarity transformation is satisfied ∀u = �h · �u with �u · �q = 0
and |�u| = 1.

Symplectic decomposition

Complex numbers can be constructed from real numbers by

z = α + iβ α, β ∈ R.

In a similar way, we can construct quaternions from complex numbers by

q = z + jw z,w ∈ C

symplectic decomposition of quaternions.
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Left/right action

Due to the non-commutative nature of quaternions we must distinguish between

q �h and �hq.
Thus, it is appropriate to consider left- and right-actions for our imaginary units i, j and k. Let
us define the operators

�L = (Li, Lj, Lk
)

(5)

and

�R = (Ri, Rj, Rk
)

(6)

which act on quaternionic states in the following way:

�L : H → H �Lq = �hq ∈ H (7)

and

�R: H → H �Rq = q �h ∈ H. (8)

The algebra of left/right generators can be expressed concisely by

L2
i = L2

j = L2
k = LiLjLk = R2

i = R2
j = R2

k = RkRjRi = −1l

and by the commutation relations[
Li,j,k, Ri,j,k

] = 0.

From these operators we can construct the following vector space:

HL ⊗ HR

whose generic element will be characterized by left and right actions of quaternionic imaginary
units i, j, k. In this paper we will work with two sub-spaces of HL ⊗ HR , namely

H
L and H

L ⊗ C
R

whose elements are represented, respectively, by left actions of i, j, k

a + �b · �L ∈ H
L a, �b ∈ R (9)

and by left actions of i, j, k and right action of the only imaginary unit i

a + �b · �L + cRi + �d · �LRi ∈ H
L ⊗ C

R a, �b, c, �d ∈ R. (10)

3. States and operators in qQM

The states of qQM will be described by vectors, |ψ〉, of a quaternionic Hilbert space, VH. First
of all, due to the non-commutative nature of quaternionic multiplication, we must specify
whether the quaternionic Hilbert space is to be formed by right or left multiplication of
quaternionic vectors by scalars. The two different conventions give isomorphic versions of the
theory [40]. We adopt the convention of right multiplication by scalars.

In quaternionic Hilbert spaces, we can define quaternionic and complex linear operators,
which will be, respectively, denoted by OH and OC. They will act on quaternionic vectors,
|ψ〉, in the following way:

OH(|ψ〉q) = (OH|ψ〉) q q ∈ H.
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and

OC(|ψ〉λ) = (OC|ψ〉) λ λ ∈ C.

Such operators are R-linear from the left.
As a concrete illustration, let us consider the case of a finite n-dimensional quaternionic

Hilbert space. The ket state |ψ〉 will be represented by a quaternionic n-dimensional column
vector

|ψ〉 =


ψ1

...

ψn

 =


x1 + jy1

...

xn + jyn

 x1, y1, . . . , xn, yn ∈ C. (11)

Quaternionic linear operators, OH, will be represented by n× n matrices with entries in H
L,

whereas complex linear operators, OC, by n× n matrices with entries in H
L ⊗ C

R .
By using the symplectic complex representation, the n-dimensional quaternionic vector

|ψ〉 = |x〉 + j|y〉 =


x1

...

xn

 + j


y1

...

yn


can be translated into the 2n-dimensional complex column vector

|ψ〉 ↔



x1

y1

...

xn

yn


. (12)

The matrix representation of Li, Lj and Lk consistent with the above identification is

Li ↔
(

i 0

0 −i

)
= iσ3

Lj ↔
(

0 −1

1 0

)
= −iσ2

Lk ↔
(

0 −i

−i 0

)
= −iσ1.

(13)

These translation rules allow us to represent quaternionic n-dimensional linear operators by
2n× 2n complex matrices.

The right quaternionic imaginary unit

Ri ↔
(

i 0

0 i

)
(14)

adds four additional degrees of freedom,

Ri LiRi LjRi LkRi
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and so, by observing that the Pauli matrices together with the identity matrix form a basis over
C, we have a set of rules which allows us to translate one-dimensional complex linear operators
using 2 × 2 complex matrices [41]. Consequently, we can construct 2n× 2n complex matrix
representations for n-dimensional complex linear operators.

Let us note that the identification in equation (14) is consistent only for complex inner
products (complex geometry) [41]. We observe that the right complex imaginary unit,Ri, does
not have a well defined Hermiticity within a qQM with quaternionic inner product (quaternionic
geometry),

〈ϕ|ψ〉 = |ϕ〉†|ψ〉 =
n∑
l=1

ϕ̄lψl. (15)

In fact, anti-Hermitian operators must satisfy

〈ϕ|Aψ〉 = −〈Aϕ|ψ〉.
For the right imaginary unit Ri, we have

|Riψ〉 ≡ Ri|ψ〉 = |ψ〉i 〈Riϕ| ≡ (Ri|ϕ〉)† = −i〈ϕ|
and consequently

〈ϕ|ψ〉i = 〈ϕ|Riψ〉 	= −〈Riϕ|ψ〉 = i〈ϕ|ψ〉.
Nevertheless, by adopting a complex geometry, i.e. a complex projection of the quaternionic
inner product,

〈ϕ|ψ〉C = 1
2 (〈ϕ|ψ〉 − i〈ϕ|ψ〉i) (16)

we recover the anti-Hermiticity of the operator Ri,

〈ϕ|Riψ〉C = −〈Riϕ|ψ〉C.

4. The right complex eigenvalue problem in qQM

The right eigenvalue equation for a generic quaternionic linear operator, OH, is written as

OH| 〉 = | 〉q (17)

where | 〉 ∈ VH and q ∈ H. By adopting quaternionic scalar products in our quaternionic
Hilbert spaces, VH, we find states in one-to-one correspondence with unit rays of the form

|r〉 = {| 〉u} (18)

where | 〉 is a normalized vector and u is a quaternionic phase of unity magnitude. The
state vector, | 〉u, corresponding to the same physical state | 〉, is an OH-eigenvector with
eigenvalue uqu

OH| 〉u = | 〉u(uqu).
For real values of q, we find only one eigenvalue, otherwise quaternionic linear operators will
be characterized by an infinite eigenvalue spectrum

{q, u1qu1, . . . , ulqul, . . .}
with ul unitary quaternions. The related set of eigenvectors{| 〉, | 〉u1, . . . , | 〉ul, . . .

}
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represents a ray. We can characterize our spectrum by choosing a representative ray

|ψ〉 = | 〉uλ
so that the corresponding eigenvalue λ = ūλquλ is complex. For this state the right eigenvalue
equation becomes

OH|ψ〉 = |ψ〉λ (19)

with |ψ〉 ∈ VH and λ ∈ C.
We now give a systematic method to determine the complex eigenvalues of quaternionic

matrix representations for OH operators.

4.1. Quaternionic linear operators and quaternionic geometry

In n-dimensional quaternionic vector spaces, H
n, quaternionic linear operators, OH, are

represented by n×n quaternionic matrices, Mn(H
L), with elements in H

L. Such quaternionic
matrices admit 2n-dimensional complex counterparts by the translation rules given in
equation (13). Such complex matrices characterize a subset of the 2n-dimensional complex
matrices

M̃2n(C) ⊂ M2n(C).

The eigenvalue equation for OH reads

MH|ψ〉 = |ψ〉λ (20)

where MH ∈ Mn(H
L), |ψ〉 ∈ H

n and λ ∈ C.

The one-dimensional eigenvalue problem

In order to introduce the reader to our general method of quaternionic matrix diagonalization,
let us discuss one-dimensional right complex eigenvalue equations. In this case equation (20)
becomes

QH|ψ〉 = |ψ〉λ (21)

whereQH = a + �b · �L ∈ H
L, |ψ〉 = |x〉 + j|y〉 ∈ H and λ ∈ C. By using the translation rules,

given in section 3, we can generate the quaternionic algebra from the commutative complex
algebra (Cayley–Dickson process). The complex counterpart of equation (21) reads(

z −w∗

w z∗

)(
x

y

)
= λ

(
x

y

)
z = a + ib1 w = b2 − ib3 ∈ C.

(22)

Equation (22) is the eigenvalue equation for a complex matrix whose characteristic equation
has real coefficients. For this reason, the translated complex operator admits λ and λ∗ as
eigenvalues.

Given the eigenvector corresponding to the eigenvalue λ, we can immediately obtain the
eigenvector associated with the eigenvalue λ∗ by taking the complex conjugate of equation (22)
and then applying a similarity transformation by the matrix

S =
(

0 −1

1 0

)
.



2978 S De Leo and G Scolarici

In this way, we find(
z −w∗

w z∗

)(
−y∗

x∗

)
= λ∗

(
−y∗

x∗

)
. (23)

So, for λ 	= λ∗ ∈ C, we obtain the eigenvalue spectrum {λ, λ∗} with eigenvectors(
x

y

) (
−y∗

x∗

)
. (24)

What happens when λ ∈ R? In this case the eigenvalue spectrum will be determined by
two equal eigenvalues λ. To show that, we remark that the eigenvectors (24) associated with
the same eigenvalues λ, are linearly independent on C. In fact,∥∥∥∥∥ x −y∗

y x∗

∥∥∥∥∥ = |x|2 + |y|2 = 0 if and only if x = y = 0.

So in the quaternionic world, by translation, we find two complex eigenvalues, respectively, λ
and λ∗, associated with the following quaternionic eigenvectors:

|ψ〉 and |ψ〉j ∈ |r〉.
The infinite quaternionic eigenvalue spectrum can be characterized by the complex eigenvalue
λ and the ray representative will be |ψ〉. In the next section, by using the same method, we
will discuss eigenvalue equations in n-dimensional quaternionic vector spaces.

The n-dimensional eigenvalue problem

Let us formulate two theorems which generalize the previous results for quaternionic n-
dimensional eigenvalue problems. The first theorem [T1] analyses the eigenvalue spectrum
of the 2n-dimensional complex matrix M̃ , the complex counterpart of the n-dimensional
quaternionic matrix MH. In this theorem we give the matrix S which allows us to construct the
complex eigenvector |φλ∗ 〉 from the eigenvector |φλ〉. The explicit construction of |φλ∗ 〉 enables
us to show the linear independence on C of |φλ〉 and |φλ∗ 〉 when λ ∈ R and represents the main
tool in constructing similarity transformations for diagonalizable quaternionic matrices. The
second theorem [T2] discusses linear independence on H for MH eigenvectors.

Theorem T1. Let M̃ be the complex counterpart of a generic n×n quaternionic matrix MH.
Its eigenvalues appear in conjugate pairs.

Proof. Let

M̃|φλ〉 = λ|φλ〉 (25)

be the eigenvalue equation for M̃ , where

M̃ ∈ M2n(C) |φλ〉 =



x1

y1

...

xn

yn


∈ C

2n λ ∈ C.
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By taking the complex conjugate of equation (25),

M̃∗|φλ〉∗ = λ∗|φλ〉∗

and applying a similarity transformation by the matrix

S = 1ln ⊗
(

0 −1

1 0

)
we obtain

SM̃∗S−1S|φλ〉∗ = λ∗S|φλ〉∗. (26)

From the block structure of the complex matrix M̃ it is easily checked that

SM̃∗S−1 = M̃

and consequently equation (26) reads

M̃|φλ∗ 〉 = λ∗|φλ∗ 〉 (27)

where

|φλ∗ 〉 = S|φλ〉∗ =



−y∗
1

x∗
1

...

−y∗
n

x∗
n


.

Let us show that the eigenvalues appear in conjugate pairs (this implies a double multiplicity
for real eigenvalues). To do this, we need to prove that |φλ〉 and |φλ∗ 〉 are linearly independent
on C. In order to demonstrate the linear independence of such eigenvectors, trivial for λ 	= λ∗,
we observe that the linear dependence, possible in the case λ = λ∗, should require∥∥∥∥∥ xi −y∗

i

yi x∗
i

∥∥∥∥∥ = |xi |2 + |yi |2 = 0 i = 1, . . . , n

verified only for null eigenvectors. The linear independence of |φλ〉 and |φλ∗ 〉 ensures an even
multiplicity for real eigenvalues. �

We shall use the results of the first theorem to obtain information about the MH right
complex eigenvalue spectrum. Due to the non-commutative nature of the quaternionic field we
cannot give a suitable definition of the determinant for quaternionic matrices and consequently
we cannot write a characteristic polynomial P(λ) for MH. Another difficulty is represented
by the right position of the complex eigenvalue λ.

Theorem T2. MH admits n linearly independent eigenvectors on H if and only if its complex
counterpart M̃ admits 2n linearly independent eigenvectors on C.

Proof. Let {|φλ1〉, |φλ∗
1
〉, . . . , |φλn〉, |φλ∗

n
〉} (28)
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be a set of 2n M̃-eigenvectors, linearly independent on C, and αl , βl (l = 1, . . . , n) be generic
complex coefficients. By definition,

n∑
l=1

(
αl|φλl 〉 + βl|φλ∗

l
〉) = 0 ⇔ αl = βl = 0. (29)

By translating the complex eigenvector set (28) in the quaternionic formalism we find{|ψλ1〉, |ψλ∗
1
〉, . . . , |ψλn〉, |ψλ∗

n
〉}. (30)

By eliminating the eigenvectors, |ψλ∗
l
〉 = |ψλl 〉j, corresponding for complex eigenvalues to

ones with a negative imaginary part, linearly dependent with |ψλl 〉 on H, we obtain{|ψλ1〉, . . . , |ψλn〉
}
.

This set is formed by n linearly independent vectors on H. In fact, by taking an arbitrary
quaternionic linear combination of such vectors, we have

n∑
l=1

[|ψλl 〉(αl + jβl)
] =

n∑
l=1

(|ψλl 〉αl + |ψλ∗
l
〉βl
) = 0 ⇔ αl = βl = 0. (31)

Note that equation (31) represents the quaternionic counterpart of equation (29). �

The MH complex eigenvalue spectrum is thus obtained by taking from the 2n-dimensional
M̃-eigenvalues spectrum

{λ1, λ
∗
1, . . . , λn, λ

∗
n}

the reduced n-dimensional spectrum

{λ1, . . . , λn}.
We stress here the fact that, the choice of positive, rather than negative, imaginary part is a
simple convention. In fact, from the quaternionic eigenvector set (30), we can extract different
sets of quaternionic linearly independent eigenvectors{[|ψλ1〉 or |ψλ∗

1
〉] , . . . , [|ψλn〉 or |ψλ∗

n
〉]}

and consequently we have a free choice in characterizing the n-dimensional MH-eigenvalue
spectrum. A direct consequence of the previous theorems, is the following corollary.

Corollary T2. Two MH quaternionic eigenvectors with complex eigenvalues, λ1 and λ2, with
λ2 	= λ1 	= λ∗

2, are linearly independent on H.

Proof. Let

|ψλ1〉(α1 + jβ1) + |ψλ2〉(α2 + jβ2) (32)

be a quaternionic linear combination of such eigenvectors. By taking the complex translation
of equation (32), we obtain

α1|φλ1〉 + β1|φλ∗
1
〉 + α2|φλ2〉 + β2|φλ∗

2
〉. (33)

The set of M̃-eigenvectors{|φλ1〉, |φλ∗
1
〉, |φλ2〉, |φλ∗

2
〉}
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is linearly independent on C. In fact, theorem T1 ensures linear independence between
eigenvectors associated with conjugate pairs of eigenvalues, and the condition λ2 	= λ1 	= λ∗

2
completes the proof by ensuring the linear independence between{|φλ1〉, |φλ∗

1
〉} and

{|φλ2〉, |φλ∗
2
〉}.

Thus the linear combination in equation (33), the complex counterpart of equation (32), is null
if and only if α1,2 = β1,2 = 0, and consequently the quaternionic linear eigenvectors |ψλ1〉
and |ψλ2〉 are linear independent on H. �

A brief discussion about the choice of spectrum

What happens to the eigenvalue spectrum when we have two simultaneous diagonalizable
quaternionic linear operators? We show that for complex operators the choice of a common
quaternionic eigenvector set reproduces in qQM the standard results of complex quantum
mechanics (cQM). Let

A1 =
(

i 0

0 i

)
E and A2 = 1

2 h̄

(
i 0

0 −i

)
(34)

be anti-Hermitian complex operators associated, respectively, with energy and spin. In cQM,
the corresponding eigenvalue spectrum is

{iE, iE}A1 and
{
i 1

2 h̄,−i 1
2 h̄
}

A2
(35)

and physically we can describe a particle with positive energy E and spin 1
2 . What happens

in qQM with quaternionic geometry? The complex operators in equation (34) also represent
two-dimensional quaternionic linear operators and so we can translate them in the complex
world and then extract the eigenvalue spectrum. By following the method given in this section,
we find the following eigenvalues:

{iE,−iE, iE,−iE}A1 and
{
i 1

2 h̄,−i 1
2 h̄, i

1
2 h̄,−i 1

2 h̄
}

A2

and adopting the positive imaginary part convention we extract

{iE, iE}A1 and
{
i 1

2 h̄, i
1
2 h̄
}

A2
.

It seems that we lose the physical meaning of a spin- 1
2 particle with positive energy. How can

we recover the different sign in the spin eigenvalues? The solution to this apparent puzzle is
represented by the choice of a common quaternionic eigenvector set. In fact, we observe that
the previous eigenvalue spectra are related to the following eigenvector sets:{(

1

0

)
,

(
0

1

)}
A1

and

{(
1

0

)
,

(
0

j

)}
A2

.

By fixing a common set of eigenvectors{(
1

0

)
,

(
0

1

)}
A1,2

(36)
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we recover the standard results of equation (35). Obviously,{(
1

0

)
,

(
0

1

)}
A1,2

→ {
+iE,+iE

}
A1

{
+i 1

2 h̄,−i 1
2 h̄
}

A2{(
1

0

)
,

(
0

j

)}
A1,2

→ {
+iE,−iE

}
A1

{
+i 1

2 h̄,+i 1
2 h̄
}

A2{(
j

0

)
,

(
0

1

)}
A1,2

→ {−iE,+iE
}

A1

{−i 1
2 h̄,−i 1

2 h̄
}

A2{(
j

0

)
,

(
0

j

)}
A1,2

→ {−iE,−iE
}

A1

{−i 1
2 h̄,+i 1

2 h̄
}

A2

represent equivalent choices. Thus, in this particular case, the different possibilities in choosing
our quaternionic eigenvector set will give the following outputs.

Energy: +E,+E and 1
2 -spin: ↑,↓

+E,−E and ↑,↑
−E,+E and ↓,↓
−E,−E and ↓,↑.

Thus, we can also describe a 1
2 -spin particle with positive energy by re-interpreting spin-

up/down negative energy as spin down/up positive energy solutions

−E,↑ (↓) → E,↓ (↑).

From an anti-Hermitian to a Hermitian matrix operator

Let us remark on an important difference between the structure of an anti-Hermitian operator
in complex and in quaternionic quantum mechanics. In cQM, we can always trivially relate
an anti-Hermitian operator, A to a Hermitian operator, H, by removing a factor i

A = iH.
In qQM, we must take care. For example,

A =
(

−i 3j

3j i

)
(37)

is an anti-Hermitian operator, nevertheless, iA does not represent a Hermitian operator. The
reason is simple: given any independent (over H) set of normalized eigenvectors |vl〉 of A with
complex imaginary eigenvalues λl ,

A =
∑
l

|vl〉|λl|i〈vl|

the corresponding Hermitian operator H is soon obtained by

H =
∑
l

|vl〉|λl|〈vl|

since both the factors are independent of the particular representative |vl〉 chosen. Due to the
non-commutative nature of |vl〉, we cannot extract the complex imaginary unit i. Our approach
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to quaternionic eigenvalue equations contains a practical method to find eigenvectors |vl〉 and
eigenvalues λl and consequently solves the problem to determine, given a quaternionic anti-
Hermitian operator, the corresponding Hermitian operator. An easy computation shows that

{i|λ1|, i|λ2|} = {2i, 4i} and {|v1〉, |v2〉} =
{

1√
2

(
i

j

)
,

1√
2

(
k

1

)}
.

So, the Hermitian operator corresponding to the anti-Hermitian operator of equation (37) is

H =
(

3 k

−k 3

)
. (38)

A practical rule for diagonalization

We know that 2n-dimensional complex operators, are diagonalizable if and only if they admit
2n linear independent eigenvectors. It is easy to demonstrate that the diagonalization matrix
for M̃

S̃M̃S̃−1 = M̃diag

is given by

S̃ = Inverse





x
(λ1)
1 x

(λ∗
1)

1 . . . x
(λn)
1 x

(λ∗
n)

1

y
(λ1)
1 y

(λ∗
1)

1 . . . y
(λn)
1 y

(λ∗
n)

1

...
...

. . .
...

...

x(λ1)
n x

(λ∗
1)

n . . . x(λn)n x
(λ∗
n)

n

y(λ1)
n y

(λ∗
1)

n . . . y(λn)n y
(λ∗
n)

n




. (39)

Such a matrix is in the same subset of M̃ , i.e. S̃ ∈ M̃2n(C). In fact, by recalling the relationship
between |φλ〉 and |φλ∗ 〉, we can rewrite the previous diagonalization matrix as

S̃ = Inverse





x
(λ1)
1 −y∗ (λ1)

1 . . . x
(λn)
1 −y∗ (λn)

1

y
(λ1)
1 x

∗ (λ1)
1 . . . y

(λn)
1 x

∗ (λn)
1

...
...

. . .
...

...

x(λ1)
n −y∗ (λ1)

n . . . x(λn)n −y∗ (λn)
n

y(λ1)
n x∗ (λ1)

n . . . y(λn)n x∗ (λn)
n




. (40)

The linear independence of the 2n complex eigenvectors of M̃ guarantees the existence of S̃−1

and the isomorphism between the group of n × n invertible quaternionic matrices GL(n,H)
and the complex counterpart group G̃L(2n,C) ensures S̃−1 ∈ M̃2n(C). So, the quaternionic
n-dimensional matrix which diagonalizes MH

SHMHS−1
H

= Mdiag
H

can be obtained directly by translating equation (40) in

SH = Inverse



x
(λ1)
1 + jy(λ1)

1 . . . x
(λn)
1 + jy(λn)1

...
. . .

...

x(λ1)
n + jy(λ1)

n . . . x(λn)n + jy(λn)n


. (41)
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In translating complex matrices in quaternionic language, we remember that an appropriate
mathematical notation should require the use of the left/right quaternionic operators Li,j,k and
Ri. In this case, due to the particular form of our complex matrices,

M̃, S̃, S̃−1 ∈ M̃2n(C)

their quaternionic translation is performed by left operators and so we use the simplified
notation i, j, k instead of Li, Lj, Lk.

This diagonalization quaternionic matrix is strictly related to the choice of a particular set
of quaternionic linear independent eigenvectors{|ψλ1〉, . . . , |ψλn〉

}
.

So, the diagonalized quaternionic matrix reads

Mdiag
H

= diag {λ1, . . . , λn}.
The choice of a different quaternionic eigenvector set{[|ψλ1〉 or |ψλ∗

1
〉] , . . . , [|ψλn〉 or |ψλ∗

n
〉]}

will give, for not real eigenvalues, a different diagonalization matrix and consequently a
different diagonalized quaternionic matrix

Mdiag
H

= diag
{
[λ1 or λ∗

1], . . . , [λn or λ∗
n]
}
.

In conclusion,

MH diagonalizable ⇔ M̃ diagonalizable

and the diagonalization quaternionic matrix can be easily obtained from the quaternionic
eigenvector set.

4.2. Complex linear operators and complex geometry

In this section, we discuss the right eigenvalue equation for complex linear operators. In n-
dimensional quaternionic vector spaces, H

n, the complex linear operator, OC, is represented
by n×n quaternionic matrices, Mn(H

L⊗C
R), with elements in H

L⊗C
R . Such quaternionic

matrices admit 2n-dimensional complex counterparts which recover the full set of 2n-
dimensional complex matrices, M2n(C). It is immediate to check that quaternionic matrices
MH ∈ Mn(H

L) are characterized by 4n2 real parameters and so a natural translation gives
the complex matrix M̃2n(C) ⊂ M2n(C), whereas a generic 2n-dimensional complex matrix
M ∈ M2n(C), characterized by 8n2 real parameters needs to double the 4n2 real parameters of
MH. By allowing right action for the imaginary units i we recover the missing real parameters.
So, the 2n-dimensional complex eigenvalue equation

M|φ〉 = λ|φ〉 M ∈ M2n(C) |φ〉 ∈ C
2n λ ∈ C (42)

becomes, in the quaternionic formalism,

MC|ψ〉 = |ψ〉λ MC ∈ Mn(H
L ⊗ C

R) |ψ〉 ∈ H
n λ ∈ C. (43)

The right position of the complex eigenvalue λ is justified by the translation rule

i1l2n ↔ Ri1ln.

By solving the complex eigenvalue problem of equation (42), we find 2n eigenvalues and we
have no possibilities to classify or characterize such a complex eigenvalue spectrum. Is it
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possible to extract a suitable quaternionic eigenvectors set? What happens when the complex
spectrum is characterized by 2n different complex eigenvalues? To give satisfactory answers
to these questions we must adopt a complex geometry [6, 7]. In this case

|ψ〉 and |ψ〉j
represent orthogonal vectors and so we cannot kill the eigenvectors |ψ〉j. So, for n-dimensional
quaternionic matrices MC we must consider the full eigenvalue spectrum

{λ1, . . . , λ2n}. (44)

The corresponding quaternionic eigenvector set is then given by

{|ψλ1〉, . . . , |ψλ2n〉} (45)

which represents the quaternionic translation of theM-eigenvector set

{|φλ1〉, . . . , |φλ2n〉}. (46)

In conclusion, within a qQM with complex geometry [31] we find for quaternionic linear
operators, MH, and complex linear operators, MC, a 2n-dimensional complex eigenvalue
spectrum and consequently 2n quaternionic eigenvectors. Let us now give a practical
method to diagonalize complex linear operators. Complex 2n-dimensional matrices, M , are
diagonalizable if and only if admit 2n linear independent eigenvectors. The diagonalizable
matrix can be written in terms ofM-eigenvectors as follows:

S = Inverse





x
(λ1)
1 x

(λ2)
1 . . . x

(λ2n−1)

1 x
(λ2n)
1

y
(λ1)
1 y

(λ2)
1 . . . y

(λ2n−1)

1 y
(λ2n)
1

...
...

. . .
...

...

x(λ1)
n x(λ2)

n . . . x
(λ2n−1)
n x(λ2n)

n

y(λ1)
n y(λ2)

n . . . y
(λ2n−1)
n y(λ2n)

n




. (47)

This matrix admits a quaternionic counterpart [41] by complex linear operators

SC = Inverse



q

[1,2]
1 + p[1,2]

1 Ri . . . q
[2n−1,2n]
1 + p[2n−1,2n]

1 Ri

...
. . .

...

q [1,2]
n + p[1,2]

n Ri . . . q [2n−1,2n]
n + p[2n−1,2n]

n Ri


 (48)

where

q
[m,n]
l = x

(λm)
l + y(λn) ∗l

2
+ j
y
(λm)
l − x(λn) ∗l

2
and

p
[m,n]
l = x

(λm)
l − y(λn) ∗l

2i
+ j
y
(λm)
l + x(λn) ∗l

2i
.

To simplify the notation we use i, j, k instead of Li, Lj, Lk. The right operator Ri indicates
the right action of the imaginary unit i. The diagonalized quaternionic matrix reproduces the
quaternionic translation of the complex matrix

Mdiag = diag {λ1, . . . , λ2n}
into

Mdiag
C

= diag

{
λ1 + λ∗

2

2
+
λ1 − λ∗

2

2i
Ri, . . . ,

λ2n−1 + λ∗
2n

2
+
λ2n−1 − λ∗

2n

2i
Ri

}
. (49)
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5. Quaternionic eigenvalue equation

By working with quaternions we have different possibilities to write eigenvalue equations.
In fact, in solving such equations, we could consider quaternionic or complex, left or right
eigenvalues. In this section, we briefly introduce the problem inherent to quaternionic
eigenvalue equations and emphasize the main difficulties present in such an approach.

5.1. Right quaternionic eigenvalue equation for complex linear operators

As seen in the previous sections, the right eigenvalue equation for quaternionic linear operators,
OH, reads

MH|ψ̃〉 = |ψ̃〉q q ∈ H.

Such an equation can be converted into a right complex eigenvalue equation by rephasing the
quaternionic eigenvalues, q,

MH|ψ̃〉u = |ψ̃〉uuqu = |ψ̃〉λ λ ∈ C.

This trick fails for complex linear operators. In fact, by discussing right quaternionic eigenvalue
equations for complex linear operators,

MC|ψ〉 = |ψ〉q (50)

due to the presence of the right imaginary unit i in MC, we cannot apply quaternionic similarity
transformations,(MC|ψ̃〉)u 	= MC

(|ψ̃〉u) u ∈ H.

Within a qQM with complex geometry [20, 31, 41], a generic anti-Hermitian operator
must satisfy

〈φ|ACψ〉C = −〈ACφ|ψ〉C. (51)

We can immediately find a constraint on our AC-eigenvalues by putting in the previous equation
|φ〉 = |ψ〉,

〈ψ |ψqψ 〉C = −〈ψqψ |ψ〉C ⇒ qψ = iαψ + jwψ

αψ ∈ R wψ ∈ C.
(52)

Thus, complex linear anti-Hermitian operators, AC, will be characterized by purely imaginary
quaternions. An important property must be satisfied for complex linear anti-Hermitian
operators, namely eigenvectors |φ〉 and |ψ〉 associated with different eigenvalues, qφ 	= qψ ,
have to be orthogonal in C. By combining equations (51) and (52), we find

〈φ|ψqψ 〉C = 〈qφφ|ψ〉C.

To guarantee the complex orthogonality of the eigenvectors |φ〉 and |ψ〉, namely 〈φ|ψ〉C = 0,
we must require a complex projection for the eigenvalues, (q)C,

qψ,φ −→ λψ,φ ∈ C.

In conclusion, a consistent discussion of right eigenvalue equations within a qQM with complex
geometry requires complex eigenvalues.
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5.2. Left quaternionic eigenvalue equation

What happens for left quaternionic eigenvalue equations? In solving such equations for
quaternionic and complex linear operators,

MH|ψ̃〉 = q̃|ψ̃〉 MC|ψ̃〉 = q̃|ψ̃〉 q̃ ∈ H

we do not have a systematic way to approach the problem. In this case, due to the presence of
left quaternionic eigenvalues (translated in complex formalism by two-dimensional matrices),
the translation trick does not apply and so we must solve the problem directly in the quaternionic
world.

In discussing left quaternionic eigenvalue equations, we underline the difficulty hidden in
diagonalizing such operators. Let us suppose that the matrix representations of our operators
are diagonalized by a matrix SH/C

SHMHS−1
H

= Mdiag
H

and SCMCS−1
C

= Mdiag
C
.

The eigenvalue equation will be modified in

Mdiag
H

SH|ψ̃〉 = SHq̃S−1
H

SH|ψ̃〉
Mdiag

C
SC|ψ̃〉 = SCq̃S−1

C
SC|ψ̃〉

and now, due to the non-commutative nature of q̃,

SH/Cq̃S−1
H/C 	= q̃.

So, we can have operators with the same left quaternionic eigenvalues spectrum but no
similarity transformation relating them. This is shown explicitly in appendix B, where we
discuss examples of two-dimensional quaternionic linear operators. Let us now analyse other
difficulties in solving the left quaternionic eigenvalue equation. The Hermitian quaternionic
linear operators satisfy

〈φ̃|HHψ̃〉 = 〈HHφ̃|ψ̃〉.
By setting |φ̃〉 = |ψ̃〉 in the previous equation we find constraints on the quaternionic
eigenvalues q̃

〈ψ̃ |̃qψ̃〉 = 〈̃qψ̃ |ψ̃〉.
From this equation we cannot extract the conclusion that q̃ must be real, q̃ = q̃ †. In fact,

〈ψ̃ |(̃q − q̃ †)|ψ̃〉 = 0

could admit quaternionic solutions for q̃ (see the example in appendix B). So, the first
complication is represented by the possibility of finding Hermitian operators with quaternionic
eigenvalues. Within a qQM, we can overcome this problem by choosing anti-Hermitian
operators to represent observable quantities. In fact,

〈φ̃|AHψ̃〉 = −〈AHφ̃|ψ̃〉
will imply, for |φ̃〉 = |ψ̃〉,

〈ψ̃ |(̃q + q̃ †)|ψ̃〉 = 0. (53)

In this case, the real quantity, q̃ + q̃ †, commutes with |ψ̃〉, and so equation (53) gives the
constraint

q̃ = iα + jw.
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We could work with anti-Hermitian operators and choose |̃q| as the observable output.
Examples of the left/right eigenvalue equation for two-dimensional anti-Hermitian operators
will be discussed in appendix B. In this appendix, we explicitly show an important difference
between the left and right eigenvalue equation for anti-Hermitian operators: left and right
eigenvalues can have different absolute values and so cannot represent the same physical
quantity.

6. Conclusions

The study undertaken in this paper demonstrates the possibility of constructing a practical
method to diagonalize quaternionic and complex linear operators on quaternionic vector spaces.
Quaternionic eigenvalue equations have to be right eigenvalue equations. As shown in our
paper, the choice of a right position for quaternionic eigenvalues is fundamental in searching
for a diagonalization method. A left position of quaternionic eigenvalues gives unwanted
surprises. For example, we find operators with the same eigenvalues which are not related by
a similarity transformation, Hermitian operators with quaternionic eigenvalues, etc.

Quaternionic linear operators in n-dimensional vector spaces take infinite spectra of
quaternionic eigenvalues. Nevertheless, the complex translation trick ensures that such
spectra are related by similarity transformations and this gives the possibility of choosing n
representative complex eigenvalues to perform calculations. The complete set of quaternionic
eigenvalues spectra can be generated from the complex eigenvalue spectrum,

{λ1, . . . , λn}
by quaternionic similarity transformations,

{u1λ1u1, . . . , unλnun}.
Such a symmetry is broken when we consider a set of diagonalizable operators. In this case
the freedom in constructing the eigenvalue spectrum for the first operator, and consequently
the free choice in determining an eigenvectors basis, will fix the eigenvalue spectrum for the
other operators.

The power of the complex translation trick gives the possibility of studying general
properties for quaternionic and complex linear operators. Complex linear operators play an
important role within a qQM with complex geometry by reproducing the standard complex
results in reduced quaternionic vector spaces [31]. The method of diagonalization becomes
very useful in the resolution of quaternionic differential equations [42]. Consequently, an
immediate application is found in solving the Schrödinger equation with quaternionic potentials
[43].

Mathematical topics to be developed are represented by the discussion of the eigenvalue
equation for real linear operators, OR, and by a detailed study of the left eigenvalue equation.
Real linear operators are characterized by left and right actions of the quaternionic imaginary
units i, j, k. The translation trick now needs to be applied in the real world and so, for a coherent
discussion, it will require the adoption of a real geometry.
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Appendix A. Two-dimensional right complex eigenvalue equations

In this appendix we explicitly solve the right eigenvalues equations for quaternionic, OH, and
complex OC, linear operators, in two-dimensional quaternionic vector spaces.

Quaternionic linear operators

Let

MH =
(

i j

k i

)
(A1)

be the quaternionic matrix representation associated with a quaternionic linear operator in a
two-dimensional quaternionic vector space. Its complex counterpart reads

M̃ =


i 0 0 −1

0 −i 1 0

0 −i i 0

−i 0 0 −i

.
In order to solve the right eigenvalue problem

MH|ψ〉 = |ψ〉λ λ ∈ C

let us determine the M̃-eigenvalue spectrum. From the constraint

det
[
M̃ − λ1l4

] = 0

we find for the M̃-eigenvalues the following solutions:{
λ1, λ

∗
1, λ2, λ

∗
2

}
M̃

= {21/4e3iπ/8, 21/4e−3iπ/8,−21/4e−3iπ/8,−21/4e3iπ/8
}
M̃
.

The M̃-eigenvector set is given by


−1 + iλ1

0

0

1

,


0

−1 − iλ∗
1

−1

0

,


0

1 − iλ∗
1

1

0

,


−1 − iλ1

0

0

1



M̃

.

The MH-eigenvalue spectrum is soon obtained from that one of M̃ . For example, by adopting
the positive imaginary part convention we find

{λ1, λ2}MH
= {21/4e3iπ/8,−21/4e−3iπ/8

}
MH

(A2)
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and the corresponding quaternionic eigenvector set, defined up to a right complex phase, reads{( −1 + iλ1

j

)
,

(
j(1 − iλ∗

1)

1

)}
MH

. (A3)

The quaternionic matrix which diagonalizes MH is

SH = Inverse

[(
−1 + iλ1 j(1 − iλ∗

1)

j 1

)]
= − 1

2|λ1|2
(

iλ∗
1 j

[
iλ1 + |λ1|2

]
kλ∗

1 iλ1 − |λ1|2
)
. (A4)

As remarked in this paper, we have infinite possibilities for diagonalization

{u1λ1u1, u2λ2u2}.
Equivalent diagonalized matrices can be obtained from

Mdiag
H

= diag{λ1, λ2}
by performing a similarity transformation

U−1Mdiag
H

U = U†Mdiag
H

U

and

U = diag{u1, u2}.
The diagonalization matrix given in equation (A4) becomes

SH → U†SH.

Complex linear operators

Let

MC =
(

−iRi + j −kRi + 1

−kRi − 1 iRi + j

)
(A5)

be the quaternionic matrix representation associated with a complex linear operator in a two-
dimensional quaternionic vector space. Its complex counterpart is

M =


1 −1 1 −1

1 −1 −1 1

−1 −1 −1 −1

−1 −1 1 1

.
The right complex eigenvalue problem

MC|ψ〉 = |ψ〉λ λ ∈ C

can be solved by determining theM-eigenvalue spectrum

{λ1, λ2, λ3, λ4}M/MC
= {2,−2, 2i,−2i}M/MC

. (A6)
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Such eigenvalues also determine the MC-eigenvalues spectrum. The MC-eigenvector set is
obtained by translating the complexM-eigenvector set


1

0

0

−1

,


0

1

1

0

,


1

−i

i

1

,


−i

1

−1

−i



M

in the quaternionic formalism{(
1

−j

)
,

(
j

1

)
,

(
1 + k

i + j

)
,

(
j − i

k − 1

)}
MC

. (A7)

The quaternionic matrix which diagonalizes MC is

SC = Inverse

[(
1 1 + k

−j i + j

)]
= 1

2

(
1 j

1
2 (1 − k) − 1

2 (i + j)

)
(A8)

and the diagonalized matrix is given by

Mdiag
C

= 2

(
−iRi 0

0 i

)
. (A9)

This matrix can be obtained directly from the M/MC eigenvalue spectrum by translating, in
the quaternionic formalism, the matrix

Mdiag =


2 0 0 0

0 −2 0 0

0 0 2i 0

0 0 0 −2i

.
It is interesting to note that equivalent diagonalized matrices can be obtained from Mdiag

C
in

equation (A9) by the similarity transformation

U†Mdiag
C

U .
For example, by choosing

U =

 −j 0

0
1 + k√

2


one finds

Mdiag
C

→ 2

(
iRi 0

0 j

)
. (A10)

Appendix B. Two-dimensional left quaternionic eigenvalue equations

Let us now examine left quaternionic eigenvalue equations for quaternionic linear operators.



2992 S De Leo and G Scolarici

Hermitian operators

Let

HH =
(

0 k

−k 0

)
be the quaternionic matrix representation associated with a Hermitian quaternionic linear
operator. We consider its left quaternionic eigenvalue equation

HH|ψ̃〉 = q̃|ψ̃〉 (B1)

where

|ψ̃〉 =
(
ψ̃1

ψ̃2

)
∈ H

2 q̃ ∈ H.

Equation (B1) can be rewritten by the following quaternionic system:

kψ̃2 = q̃ψ̃1 −kψ̃1 = q̃ψ̃2.

The solution is

{q̃}HH
= {z + jβ}HH

where

z ∈ C β ∈ R |z|2 + β2 = 1.

The HH-eigenvector set is given by{(
ψ̃1

−k(z + jβ)ψ̃1

)}
HH

.

It is easy to verify that in this case

〈ψ̃ |(q̃ − q̃†)|ψ̃〉 = 0

is verified for quaternionic eigenvalues q̃ 	= q̃†.

Anti-hermitian operators

Let

AH =
(

j i

i k

)
be the quaternionic matrix representation associated with an anti-Hermitian quaternionic linear
operator. Its right complex spectrum is given by

{λ1, λ2}HH
=
{

i

√
2 −

√
2, i

√
2 +

√
2
}

HH

.

We now consider the left quaternionic eigenvalue equation

AH|ψ̃〉 = q̃|ψ̃〉 (B2)
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where

|ψ̃〉 =
(
ψ̃1

ψ̃2

)
∈ H

2 q̃ ∈ H.

By solving the following quaternionic system:

jψ̃1 + iψ̃2 = q̃ψ̃1 iψ̃1 + kψ̃2 = q̃ψ̃2

we find {
q̃1, q̃2

}
AH

=
{

i√
2

+
j + k

2
,

−i√
2

+
j + k

2

}
AH

and 
 ψ̃1(

1√
2

+
j + k

2

)
ψ̃1

,
 ψ̃1(−1√

2
+

j + k

2

)
ψ̃1




HH

.

We observe that{
|u1λ1u1| =

√
2 −

√
2, |u2λ2u2 =

√
2 +

√
2
}

and {|q̃1| = 1, |q̃2| = 1
}
.

Thus, left and right eigenvalues cannot be associated with the same physical quantity.

A new possibility

In order to complete our discussion let us discuss for the quaternionic linear operator given in
equation (A1) its left quaternionic eigenvalue equation

MH|ψ̃〉 = q̃|ψ̃〉 (B3)

where

|ψ̃〉 =
(
ψ̃1

ψ̃2

)
∈ H

2 q̃ ∈ H.

Equation (B3) can be rewritten using the following quaternionic system:

iψ̃1 + jψ̃2 = q̃ψ̃1

kψ̃1 + iψ̃2 = q̃ψ̃2.

The solution gives for the quaternionic eigenvalue spectrum{
q̃1, q̃2

}
MH

=
{

i +
j + k√

2
, i − j + k√

2

}
MH

(B4)

and for the eigenvector set
 1

1 − i√
2

,
 1

i − 1√
2


MH

. (B5)
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Let us now consider the following quaternionic linear operator:

NH =

 i +
j + k√

2
0

0 i − j + k√
2

. (B6)

This operator represents a diagonal operator and has the same left quaternionic eigenvalue
spectrum of MH, notwithstanding such an operator is not equivalent to Mdiag

H
. In fact, the

NH-complex counterpart is characterized by the following eigenvalue spectrum:{
i
√

2,−i
√

2, i
√

2,−i
√

2
}
N

different from the eigenvalue spectrum of the M-complex counterpart of MH. Thus, there
is no similarity transformation which relates these two operators in the complex world and
consequently by translation there is no a quaternionic matrix which relates NH to MH. So,
in the quaternionic world, we can have quaternionic linear operators which have the same left
quaternionic eigenvalue spectrum but are not related by a similarity transformation.
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